This product specification specifies the product's performance and test methods as a basis for technical validation. #### Product application range Backup power: RAM, detonator, car recorder, smart meter, vacuum switch, digital camera, motor drive Energy storage: intelligent three meters, UPS, security equipment, communication equipment, flashlights, water meters, gas meters, taillights, small appliances. High current operation: electrified railway, smart grid control, hybrid vehicle, wireless transmission. High-power support: wind power, locomotive start, ignition, electric cars, etc. Standard test conditions The standard test conditions of this specification are standard atmospheric pressure, temperature 25 $^{\circ}$ C, relative humidity less than 60%. (Test basis) QC/T 741-2014 Vehicle super capacitor DL/T 1652-2016 Technical specifications for supercapacitors for electric energy metering equipment This product is based on the principle of electric double layer capacitors, using activated car bon as positive and negative electrodes inside, separated by electrolyte and diaphragm between the two electrodes, stainless steel shell. | Rated Voltage (25) U ₀ | | 5.5V | / | | |------------------------------------|-----------------------------|--------------|--|--| | Category Temperature Range | | -25 ~85 | / | | | Storage temperature range (at OV) | | -25 ~85 | / | | | Rated Capacitance (25) | | 1F | V 4.4V-2.75V | | | Permitting Capacitance Error | | -10% ~ + 30% | / | | | Internal Resistance | nternal Resistance AC@ 1kHz | | / | | | Nominal Current (25) | | O.050A | Charge to rated voltage $\rm U_{0}$ 5sdischarge to 1/2 $\rm U_{0}$ | | | Max Current (25) | | O.054A | Charge to rated voltage U ₀ 1sdischarge to 1/2 | | | Leakage Current at 72h (25) | | 12µА | / | | | Item | | Specification/Condition | |------|---------------------------------|--| | | Low Temperature | Placed in an environment of -25 for 2 hours, there is no damage to the appearance, no leakage, and the capacity change rate does not exceed | | | Low reinperature | ± 30% | | 01 | | ± 3U% | | | High temperature | Placed in a ± 85 environment, working for 16 hours, no damage to the appearance, no leakage, and the capacity change rate does not exceed $\pm 30\%$ | | | | | | 02 | High temperature load | +85 plus 5.0V voltage, after 1000h, C/C 30%, ESR 4 times the specified value. | | | Hig temperature storage | ESR 2 25
+85 , 96h, after 2h standing at room temperature, the appearance is not damaged, no leakage, C/C 10%, ESR 2 times the initial value (25 | | 03 | LOW temperature storage | -25 , 96h, after 2h standing at room temperature, the appearance is not | | | Low temperature storage | damaged, no leakage, C/C 10%,ESR 2 times the initial value (25) | | 04 | The steady state damp heat test | | | 05 | The steady state damp heat test | +40 ,90-95%RH,240h, C/C 30%,ESR 4 times the specified value. | | 05 | Cycle life Expectancy | With rated voltage, 500,000 cycles of charging and discharging experiments at room temperature. C/C 30%,ESR 4 times the initial value (25) | - ① Cathode sign - \bigcirc - 3 KAM Brand Rated capacitance and rated voltage | Size of inner packing | Size of outer packing | |-----------------------|-----------------------| | 265×190×90 | 400×281×126 | According to the standard QC/T 741-2014 Vehicle super capacitor Q/GDW 11845—2018 Technical specifications for supercapacitors for electric energy metering equipment DL/T 1652-2016 Technical specifications for supercapacitors for electric energy metering equipment capacity test Measuring circuit Setting the constant current value of the constant current discharge device, according to Table 2 specified. Turn the switch S to the d.c. power supply, and unless otherwise specified in the individual standards, apply voltage and charge for 30 min after the constant current/ constant voltage power supply has achieved the rated voltage. After charging for 30 min has finished, change over the switch S to the constant current discharge device, and discharge with a constant current. Unless otherwise specified in the individual standards, measure the time t1 and t2 where the voltage between capacitor terminals at the time of discharge reduces from U1 to U2 as shown in Figure 2, and calculate the capacitance value by the following formula: Discharge current I and decrease in voltage of discharge voltage U1, U2, according to table 1 Table 1 - Discharge conditions | Classification | Coin type product) | | | | | |----------------|------------------------------------|----------------------------|-------------------------------------|--|--| | Application | Energy storage | Instantaneous power, power | $C \times U$ | | | | Charging time | 30min | 30min | $I_1 = \frac{C_R \times U_R}{3600}$ | | | | I A | $I = 5I_1$ | $I = 40I_1$ | | | | | U1 | 80% of the charging voltage 0.8×UR | | | | | | U2 | 50% of the charging voltage 0.5×UR | | | | | Remarks F C_R is the nominal capacity of the supercapacitor in Farads (F); V U_R rated voltage in volts (V); A I is the charge and discharge test current in amps (A); I_1 is a supercapacitor 1 times charge and discharge current in amps (A) #### Equipmen A ARBIN super capacitor test system B Linear DC stabilized voltage power supply C Constant current discharging device D Voltage recording device AC internal resistance test Measuring circuit As shown in the measurement circuit for testing Figure 3-Circuit for a.c. resistance method Measuring method The internal resistance Ra of a capacitor shall be calculated by the following formula: $$R_{\rm a} = \frac{U}{I}$$ where Ra a.c. internal resistance U the effective value of a.c. voltage V r.m.s I the effective value of a.c. current V r.m.s The frequency of the measuring voltage shall be 1 kHz The a.c. current shall be from 1 mA to 10 mA equipment Internal resistance tester High temperature durability characteristic curve The above curves are all trend curves, and the data of different models are different. If you have any requirements, please contact the technology. Supercapacitors cannot be used in the following states a) temperature above the nominal temperature When the temperature of the capacitor exceeds the nominal temperature, it will cause the electrolyte to decompose, and the capacitor will heat up and the capacity will drop. Moreover, Kamcap supercapacitor product specification the internal resignation Do not forcibly twist or tilt the capacitor after installation. When the supercapacitors are used in series, there is a voltage balance problem between the cells. Do not store in a place with a relative humidity greater than 85% or containing toxic gases and in a high temperature, high humidity environment. It is recommended to store in an environment with a temperature of -30 \sim 50 and a relative humidity of less than 60% for a long time. Avoid preserving supercapacitors in the following environments Environment where direct splashing water, salt water and oil are present, or in a dew condensation state, filled with gaseous oil or salt. t An environment filled with harmful gases (hydrogen sulfide, sulfurous acid, chlorine, ammonia, bromine, methyl bromide, etc.). þ